Management of Asthma

Federal Bureau of Prisons
Clinical Practice Guidelines

May 2013

Clinical guidelines are made available to the public for informational purposes only. The Federal Bureau of Prisons (BOP) does not warrant these guidelines for any other purpose, and assumes no responsibility for any injury or damage resulting from the reliance thereof. Proper medical practice necessitates that all cases are evaluated on an individual basis and that treatment decisions are patient-specific. Consult the BOP Clinical Practice Guidelines Web page to determine the date of the most recent update to this document:
What’s New in This Document?

This document is a major revision to the *BOP Clinical Practice Guidelines on the Management of Asthma*, issued in 2000. As such, the revisions are not highlighted, but are briefly discussed below.

The 2007 National Asthma Education and Prevention Program (NAEPP) Expert Panel Report emphasizes a shift in focus to monitoring asthma control as a goal for asthma therapy. The report also distinguishes asthma severity and asthma control. The current BOP guidelines contain modifications that parallel this new focus.

In addition, the 2007 NAEPP Expert Panel Report cites other key differences from its previous reports in 1997 and 2002:

- The critical role of inflammation has been further substantiated, but evidence is emerging for considerable variability in the pattern of inflammation, thus indicating phenotypic differences that may influence treatment responses.

- Gene-by-environmental interactions are important to the development and expression of asthma. Of the environmental factors, allergic reactions remain important. Evidence also suggests a key and expanding role for viral respiratory infections in these processes.

- The onset of asthma for most patients begins early in life with the pattern of disease persistence determined by early, recognizable risk factors including atopic disease, recurrent wheezing, and a parental history of asthma.

- Current asthma treatment with anti-inflammatory therapy does not appear to prevent progression of the underlying disease severity.
Table of Contents

1. **Purpose** ... 1

2. **Definitions** .. 1

3. **Cause** ... 2

4. **Diagnosis** .. 2
 - Physical Examination ... 4
 - Spirometry .. 4
 - Additional Studies and Alternative Diagnoses .. 5

5. **Assessment and Monitoring** .. 6
 - Severity ... 7
 - Control .. 8
 - Responsiveness ... 8
 - Peak Flow .. 9
 - Self-Monitoring Action Plans .. 9
 - Peak Expiratory Flow ... 9
 - Peak Flow Monitoring .. 10

6. **Treatment of Asthma** .. 11
 - Quick-Relief Medications ... 11
 - Short-Acting Beta₂-Agonists (SABAs) ... 11
 - Anticholinergics ... 11
 - Systemic Corticosteroids .. 11
 - Long-Term Control Medications ... 11
 - Corticosteroids .. 11
 - Mast Cell Stabilizers ... 12
 - Long-Acting Beta₂-Agonists (LABAs) ... 12
 - Methylxanthines ... 12
 - Leukotriene Receptor Antagonists .. 12
 - Special Situations .. 13
 - Exercise Induced Bronchospasm (EIB) .. 13
 - Treatment in Pregnancy .. 13
7. Step Therapy for Asthma

STEP 1: Intermittent Asthma

STEP 2: Mild Persistent Asthma

STEP 3: Moderate Persistent Asthma

STEP 4: Severe Persistent Asthma

STEP 5: Severe Persistent Asthma

STEP 6: Severe Persistent Asthma

8. Asthma Exacerbation Management

Hospitalization

Compliance

Basic Facts Defining Asthma

Basic Facts about Asthma Medications

Identifying and Managing Asthma Triggers

How to Use a Peak Flow Meter

Written Asthma Action Plan

References

TABLES

Table 1. Key Symptom Indicators for Considering a Diagnosis of Asthma

Table 2. Spirometry Testing Outcomes

Table 3. Additional Studies When Considering Alternative Diagnoses

Table 4. Differential Diagnostic Possibilities for Asthma in Adults

Table 5. Clinical Features Differentiating COPD and Asthma

Table 6. Severity of Asthma Exacerbation

Table 7. Dosages of Drugs for Asthma Exacerbations

APPENDICES

Appendix 1. OVERVIEW: Diagnosis and Management of Asthma (for Patients Not Currently Taking Long-Term Control Medications)

Appendix 2. Methods for Establishing the Diagnosis

Appendix 3. Sample Questions for the Diagnosis and Initial Assessment of Asthma

Appendix 4. Suggested Items for Detailed Medical History
Appendix 5. Classifying Asthma Severity and Initiating Treatment *(for Patients Not Currently Taking Long-Term Control Medications)* ..27

Appendix 6. Stepwise Approach for Managing Asthma ...28

Appendix 7. Assessing Asthma Control and Adjusting Therapy ...29

Appendix 8. Overview of Classes of Asthma Medications ...30

Appendix 9. Inhaled Corticosteroids Dosing Chart ...31

Appendix 10. Patient Self-Assessment Questionnaire ...32

Appendix 11. Measuring Lung Function ...33

Appendix 12. Establishing Baseline Measures for Peak Flow Monitoring34

Appendix 13. Patient Fact Sheet: Basic Facts About Asthma ..35

Appendix 14. Patient Fact Sheet: Basic Facts About Asthma - Spanish ..36

Appendix 15. Patient Fact Sheet: Peak Flow Meter Information ...37

Appendix 16. Patient Fact Sheet: Peak Flow Meter Information - Spanish39

Appendix 17. Asthma Action Plan ..41

Appendix 18. Asthma Action Plan - Spanish ..42
1. Purpose

The BOP Clinical Practice Guidelines for the Management of Asthma provide recommendations for the medical management of Federal inmates with asthma.

2. Definitions

Asthma: NAEPP defines asthma as “a common chronic disorder of the airways that is complex and characterized by variable and recurring symptoms, airflow obstruction, bronchial hyperresponsiveness, and an underlying inflammation. The interaction of these features of asthma determines the clinical manifestations and severity of asthma,” as well as the response to treatment.¹ The resulting inflammation causes recurrent episodes of wheezing, breathlessness, chest tightness, and coughing. These episodes usually result in airway obstruction that can be variable and is often reversible, either spontaneously or with treatment.

PEFR: Peak Expiratory Flow Rate, the maximum rate of exhalation during testing, using a peak flow meter or spirometer.

PEF: Peak Expiratory Flow, a test that measures the peak expiratory flow rate (PEFR).

PFM: Peak Flow Meter, a simple device intended for home or clinic use, which allows a patient with asthma to measure his or her peak expiratory flow rates and compare them to expected ranges.

FVC: Forced Vital Capacity, the maximal volume of air forcibly exhaled from the point of maximal inhalation by a patient during spirometry.

FEV₁: Forced Expiratory Volume in 1 second, the volume of air exhaled during the first second of the FVC.

FEV₆: Forced Expiratory Volume in 6 seconds. The Expert Panel has found this to be an acceptable substitute for FVC in adults and is easier for patients to complete.

3. Cause

Although not thoroughly understood, asthma is a chronic inflammatory disorder of the airways. It is a result of the relationship between host factors and environmental exposures that occur at a critical time in immune system development. Host factors include innate immunity and genetics. The two major environmental factors contributing to the development of asthma are airborne allergens and viral respiratory infections. Several other environmental exposures— including tobacco smoke, air pollution, and diet—are associated with an increased risk for asthma; this association has not been clearly established.

Although researchers have been unable to define the cause of the inflammatory process leading to asthma, they have determined the following:

- The immunohistopathologic features of asthma include inflammatory cell infiltration. These features comprise: neutrophils (especially in sudden-onset, fatal asthma exacerbations; occupational asthma; and patients who smoke), eosinophils, lymphocytes, mast cell activation, and epithelial cell injury.
- Airway inflammation contributes to airway hyperresponsiveness, airflow limitation, respiratory symptoms, and disease chronicity.
- In some patients, persistent changes in airway structure occur, including sub-basement fibrosis, mucus hypersecretion, injury to epithelial cells, smooth muscle hypertrophy, and angiogenesis.
- Gene-by-environment interactions are important to the expression of asthma.
- Atopy, the genetic predisposition for the development of an immunoglobulin E (IgE)-mediated response to common aeroallergens, is the strongest identifiable predisposing factor for developing asthma.
- Viral respiratory infections are one of the most important causes of asthma exacerbation and may also contribute to the development of asthma.

4. Diagnosis

The diagnosis of asthma requires the clinician to establish:

- Symptoms of recurrent episodes of airflow obstruction or airway hyperresponsiveness (see Table 1).
- Airflow obstruction that is at least partially reversible as measured by spirometry.
- Exclusion of alternative diagnoses (see Table 4).

The methods the clinician uses to establish the points mentioned above are:

- Detailed medical history: When a provider is examining a patient suspected of having asthma, a detailed medical history is recommended—to identify symptoms that may be due to asthma and to support the likelihood of asthma. See Appendix 4 for sample questions.
- **Physical exam:** Findings may increase the probability of asthma; however, a lack of findings does not rule out the diagnosis, as signs may be absent between episodes.

- **Spirometry** is an objective measure to assess reversibility and can demonstrate obstruction.

- **Additional Testing:** Depending upon symptoms, the physical exam, and spirometry results, additional tests (see *Table 3*) may be necessary when considering differential diagnoses.

Table 1. Key Symptom Indicators for Considering a Diagnosis of Asthma

1. **Consider a diagnosis of asthma and performing spirometry if any of the following indicators are present.** These indicators are not diagnostic in themselves, but the presence of multiple key indicators increases the probability of a diagnosis of asthma. Spirometry is needed to establish a diagnosis of asthma.

2. Eczema, hay fever, or a family history of asthma or atopic diseases are often associated with asthma, but they are not key indicators.

- **Wheezing:**
 - High-pitched whistling sounds when breathing out
 - Lack of wheezing and normal findings on chest examination do not exclude asthma

- **History of any of the following:**
 - Cough, particularly worse at night
 - Recurrent wheeze
 - Recurrent difficulty in breathing
 - Recurrent chest tightness

- **Symptoms occur or worsen in the presence of:**
 - Exercise
 - Viral infection
 - Inhalant allergens (animals with fur or hair)
 - House-dust mites (in mattresses, pillows, upholstered furniture, carpets)
 - Mold
 - Smoke (tobacco, wood) or other irritants
 - Pollen
 - Changes in weather
 - Strong emotional expression (laughing or crying hard)
 - Airborne chemicals or dusts
 - Menstrual cycles
 - Stress

- **Symptoms occur or worsen at night, awakening the patient.**
Physical Examination

While examining the upper respiratory tract, chest, and skin, providers may observe the sounds of wheezing during normal breathing or a prolonged phase of forced exhalation. They may also find:

- **Upper respiratory tract**: Increased nasal secretion, mucosal swelling, nasal polyps
 - If polyps are found, this could indicate an aspirin sensitivity or allergy leading to aspirin-exacerbated respiratory disease.
 - Finding a pale, swollen lining of the nasal cavities, upon examination with an otoscope, suggests associated allergic rhinitis, a common condition among patients with allergic asthma.
- **Chest**: Use of accessory muscles, appearance of hunched shoulders, hyperexpansion of the chest, chest deformity.
- **Skin**: Atopic dermatitis or eczema or other appearances of an allergic skin reaction. About one-third of patients with atopic dermatitis develop asthma.
- **Clubbing**: This is not a feature of asthma; if present, the clinician should consider alternative diagnoses such as interstitial lung disease, lung cancer, and diffuse bronchiectasis, including cystic fibrosis.

Spirometry

Spirometry is used to assess reversibility, can demonstrate obstruction, and is used over methods such as peak flow meters that are not diagnostic tools and are only recommended for monitoring. Spirometer measurements should be performed on inmates suspected of having asthma.

Spirometry is used to determine if there is air flow obstruction and to determine if a bronchodilator produces reversibility over the short term. Measurements (FEV₁, FEV₆, FEV₁/FEV₆) are made before and after the inmate inhales a short-acting bronchodilator. Significant reversibility can be characterized by an increase in FEV₁ of greater than 200 mL and greater than 12% from baseline.

In the past, FVC was used as the standard; however, FEV₆ has been shown to be more reproducible and less physically demanding than FVC. Furthermore, the use of FEV₆ results in diagnosing and treating asthma have been shown to be equivalent to those of FVC.

When utilizing spirometry, correct technique, calibration methods, maintenance, as well as maximal effort by the patient are all necessary to complete the testing. Abnormalities of lung function are categorized in terms of **restrictive** and **obstructive** defects.

The severity of the abnormal spirometric measurements is evaluated by comparing the inmate’s results with reference values based on age, height, sex, and race. Healthcare providers not trained in the interpretation of spirometry should have the results reviewed by a specialist.

- *Due to the unreliability of medical history and physical exam in excluding other diagnoses and assessing lung function, spirometry is essential in making the diagnosis of asthma.* Due to its diagnostic importance and the need for periodic monitoring, spirometry should be available for use in all institutions. Please refer to *Appendix 11* for spirometry testing time frames.
Table 2. Spirometry Testing Outcomes

<table>
<thead>
<tr>
<th>Values</th>
<th>Outcome</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Results Indicating Possible Asthma Diagnosis*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>↓FEV₁ with normal or ↓FEV₁/FEV₆ ratio</td>
<td>Obstructive</td>
<td>See Appendix 5.</td>
</tr>
<tr>
<td>Results Indicating Possible Diagnosis Other Than Asthma</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| Proportionately ↓FEV₆ with a normal or ↑FEV₁/FEV₆ | Restrictive | • Absence of obstructive findings or the presence of restrictive indices suggests other causes of lung disease.
• Evaluate lung volumes and the patient’s diffusing capacity for carbon monoxide (DLCO). |
| Normal indices | | |
| Normal indices with active symptoms of typical asthma | May represent vocal cord dysfunction | An abnormal inspiratory flow volume loop with normal spirometry is suggestive, but not diagnostic of vocal cord dysfunction. |

* Reversibility should be assessed as part of a workup and prior to the diagnosis of asthma.

Note: Chronic asthma may be associated with decreased lung function with a loss of response to bronchodilator. In these cases, a 2-3 week trial of an oral corticosteroid may be required to improve or achieve asthma control, so that reversibility testing may be completed without bias. The spirometry measurements that establish reversibility may not indicate the inmate’s best lung function.

Additional Studies and Alternative Diagnoses

Although asthma is typically associated with an obstructive impairment that is reversible, neither spirometry nor any other single test or measurement is adequate to diagnose asthma. Many diseases are associated with this pattern of abnormality. The inmate’s pattern of symptoms, medical history and exclusion of other possible diagnoses are also needed to establish a diagnosis of asthma. See Table 3 below.

Table 3. Additional Studies When Considering Alternative Diagnoses

<table>
<thead>
<tr>
<th>These studies are not necessary for adults; however, they may aid the provider in considering an alternative diagnosis.</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Additional pulmonary function studies will help if there are questions about COPD (diffusing capacity), a restrictive defect (measures of lung volume), or VCD (evaluation of inspiratory flow-volume loops).</td>
</tr>
<tr>
<td>• Bronchoprovocation with methacholine, histamine, cold air, or exercise challenge may be useful when asthma is suspected and spirometry is normal or near normal. For safety reasons, bronchoprovocation should be carried out only by a trained individual. A positive test is diagnostic for airway hyperresponsiveness, which is a characteristic feature of asthma, but can also be present in other conditions. Thus, a positive test is consistent with asthma, but a negative test may be more helpful to rule out asthma.</td>
</tr>
<tr>
<td>• Chest x-ray is used to exclude other diagnoses.</td>
</tr>
<tr>
<td>• Allergy testing is generally not indicated, but should be considered for inmates with persistent, moderate to severe asthma which is not responding adequately to standard treatment. As a diagnostic test, it may occasionally prove useful in determining specific allergens which should be avoided by the patient. Immunotherapy based upon allergy testing must be justified as medically necessary and approved on a case-by-case basis.</td>
</tr>
</tbody>
</table>
Although recurrent episodes of cough and wheezing are most often due to asthma, the clinician needs to be alert for other possible diagnoses. The differential diagnoses for asthma are listed in Table 4 below. Clinical features differentiating COPD and asthma are listed in Table 5.

Table 4. Differential Diagnostic Possibilities for Asthma in Adults

<table>
<thead>
<tr>
<th>Possibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Chronic obstructive pulmonary disease (COPD) (e.g., chronic bronchitis or emphysema). COPD and asthma can be very difficult to distinguish in untreated patients. See Table 5 for additional clinical features that can help a provider determine a diagnosis.</td>
</tr>
<tr>
<td>• Congestive heart failure</td>
</tr>
<tr>
<td>• Pulmonary embolism</td>
</tr>
<tr>
<td>• Mechanical obstruction of the airways (benign and malignant tumors)</td>
</tr>
<tr>
<td>• Pulmonary infiltration with eosinophilia (Churg-Strauss syndrome)</td>
</tr>
<tr>
<td>• Cough resulting from administration of drugs (e.g., angiotensin-converting enzyme [ACE] inhibitors)</td>
</tr>
<tr>
<td>• Evaluation for gastroesophageal reflux disease (GERD) should be pursued if suggested by history or examination. Respiratory symptoms are often seen in those with acid reflux and, conversely, gastroesophageal reflux is common among patients with asthma. Reflux has been identified as a trigger for asthma. GERD should be considered if the inmate’s symptoms suggest dyspepsia, or if nocturnal awakening with asthma attacks is a consistent pattern. An empirical trial of a proton pump inhibitor or H-2 blocker is recommended if GERD is suspected.</td>
</tr>
<tr>
<td>• Vocal cord dysfunction (VCD) is a distinct disorder, although it may mimic asthma or coexist with asthma. VCD is difficult to treat and medications used to treat asthma typically are ineffective for this condition. VCD should be considered in difficult-to-treat, atypical asthma patients.</td>
</tr>
</tbody>
</table>

Note: In addition to alternative diagnoses, several conditions may coexist with asthma, which can complicate a diagnosis. These include ABPA, obstructive sleep apnea, and GERD.

Table 5. Clinical Features Differentiating COPD and Asthma

<table>
<thead>
<tr>
<th>Clinical Features</th>
<th>COPD</th>
<th>Asthma</th>
</tr>
</thead>
<tbody>
<tr>
<td>Smoker or ex-smoker</td>
<td>Nearly all</td>
<td>Possibly</td>
</tr>
<tr>
<td>Symptoms under age 35</td>
<td>Rare</td>
<td>Often</td>
</tr>
<tr>
<td>Chronic productive cough</td>
<td>Common</td>
<td>Uncommon</td>
</tr>
<tr>
<td>Breathlessness</td>
<td>Persistent & progressive</td>
<td>Variable</td>
</tr>
<tr>
<td>Nighttime waking with breathlessness and/or wheeze</td>
<td>Uncommon</td>
<td>Common</td>
</tr>
<tr>
<td>Commonly associated with atopic symptoms and seasonal allergies</td>
<td>Uncommon</td>
<td>Common</td>
</tr>
<tr>
<td>Significant diurnal or day-to-day variability of symptoms</td>
<td>Uncommon</td>
<td>Common</td>
</tr>
<tr>
<td>Favorable response to inhaled glucocorticoids</td>
<td>Inconsistent</td>
<td>Consistent</td>
</tr>
</tbody>
</table>

5. Assessment and Monitoring

Appropriate asthma management is based on assessing and monitoring disease severity, control, and responsiveness to treatment.

Severity

Severity is defined as the intensity of the disease process, and the level of severity is determined by assessing the disease burden in terms of impairment and risk of adverse events associated with asthma. Classifying asthma severity is useful for initial therapeutic decisions regarding appropriate medications and interventions.

- Although severity is more accurately assessed before a patient begins long-term asthma treatment, often a provider is faced with a patient who is already on a drug regimen for the treatment of their asthma. In these cases, it is useful to classify severity based on the minimum amount of drug therapy needed to achieve control. This method postulates that the patient is responsive to the current treatment and focuses on the importance of achieving a satisfactory level of asthma control.

- For patients not on long-term controller medications, severity is based on measurement of impairment and risk utilizing the most severe category in which any feature appears.

Impairment concerns the functional limitations of the patient, as well as the frequency and severity of symptoms. Impairment is usually assessed by spirometry and patient history. The evaluation of the inmate’s symptoms over the previous four weeks includes:

- Need for a short-acting beta2-agonist (SABA) for immediate relief
- Number of work/school days absent
- Ability to perform normal daily activities
- Nighttime awakenings
- Quality of life assessments

Functional limitations should be assessed through spirometry by measuring FEV1, FEV6, and the ratio FEV1/FEV6. Peak flow is not reliable for assessing initial severity due to unique patient characteristics, but may be useful in assessing control on an ongoing basis. Validated self-assessment questionnaires—such as the Asthma Control Test™, Asthma Control Questionnaire, and Asthma Therapy Assessment Questionnaire® (see Appendix 10)—can be helpful in evaluating impairment.

Risk is the likelihood that the patient will experience adverse events such as asthma exacerbations, progressive and irreversible loss of pulmonary function, or side effects to drug therapy. Risk can be hard to assess, but a comprehensive medical history can provide key information. The test which should be most utilized when assessing the risk of future adverse events is spirometry—especially FEV1 expressed as a percent of the predicted value or as a proportion of the FEV6 (FEV1/ FEV6). Other specific measures to assess risk in relation to severity include:

- Previous frequency and severity of exacerbations
- Oral corticosteroid use
- Urgent care visits
- Lung function
For example, if an inmate has had an exacerbation requiring an emergency department visit, hospitalization, or intensive care unit admission, especially in the past year, then his or her risk of a severe exacerbation is increased; this will alter the treatment approach to that complication.

Currently, there are insufficient data to associate frequency of exacerbations with various levels of asthma severity. In general, more frequent and intense (e.g., requiring urgent/unscheduled care, hospitalization, or ICU admission) exacerbations may indicate more severe underlying asthma. For treatment purposes, two or more exacerbations requiring oral systemic corticosteroids annually may be considered the same as persistent asthma, regardless of the absence of impairment levels consistent with persistent asthma.

Initial severity classification determines the recommended step at which to initiate therapy, although the clinician must also consider individual patient needs when making treatment decisions. Treatment should be initiated as follows:

- Intermittent asthma: Step 1
- Mild persistent asthma: Step 2
- Moderate persistent asthma: Step 3
- Severe persistent asthma: Step 4, Step 5, or Step 6

See the table in Appendix 5, Classifying Asthma Severity and Initiating Treatment, which summarizes the above information.

Control

Asthma control is assessed by how well a patient’s symptoms, functional impairments, and risks of problematic events are minimized and goals of therapy are met. The monitoring of asthma control is vital to guiding therapy adjustments or the decision to maintain current treatment.

- **Ultimately, level of control should guide treatment**; this may include maintaining current treatment, stepping up if necessary, or stepping down if possible. Before stepping up therapy, adherence, inhaler technique, environmental control, and comorbid conditions should always be considered.

- **Comorbid conditions may complicate the presentation of asthma and impede asthma management.** The treatment of these conditions may improve asthma control. Comorbid conditions include: ABPA, gastroesophageal reflux, obesity, obstructive sleep apnea, rhinitis/sinusitis, stress, and depression.

Responsiveness

Patient responsiveness to treatment is the ease by which asthma control is achieved through pharmacological therapy. When assessing asthma therapy, one must keep in mind that therapies may produce responsiveness in one area without producing results in the other. For example, substituting a LABA for an inhaled corticosteroid (ICS) might maintain control of symptoms and function (improved impairment), but not reduce the risk of exacerbations (unimproved risk).

In the future, non-invasive biomarkers (blood/sputum eosinophils, fractionated exhaled nitric oxide, urinary leukotrienes, etc.) may also be assessed. However, at this time, their use has not been validated.
Peak Flow

Self-Monitoring Action Plans

Self-monitoring action plans, either peak flow- or symptom-based, play an important part in the management of asthma. Studies do not clearly show superiority of one type of plan over the other; however, both show similar benefits if taught and followed correctly. Both types of plans appear to increase patients’ awareness of the disease status and control, thereby helping patients “tune in” to their disease; furthermore, action plans enhance clinician-patient communication. Regardless of the approach (peak flow monitoring, symptom monitoring, or a combination of both), self-monitoring is critical to the effectiveness of asthma self-management. Therefore, all patients, regardless of their use of peak flow monitoring, should be provided with a written asthma action plan that includes:

- Daily treatment
- How to recognize and respond to worsening asthma
- Self-adjustment of medications in response to acute symptoms or changes in PEF measures

The nature and intensity of self-monitoring should be individualized, based on a variety of factors, including: asthma severity, the patient’s ability to perceive airflow obstruction, and patient preferences. Patients who have difficulty identifying and reporting subjective measures warrant the use of peak flow monitoring.

See Appendices 17 and 18, which provide sample asthma action plans (in English and Spanish) based on self-monitoring.

Peak Expiratory Flow

PEF measurements provide a means to obtain simple, quantitative, and reproducible assessments of the existence and severity of airflow obstruction. It must be stressed that peak flow meters function best as tools for ongoing monitoring, not diagnosis.

The relative usefulness of peak flow measurements as monitoring tools can be individualized. Measurement of PEF is dependent on effort and technique; therefore, patients need instructions, demonstrations, and frequent reviews of technique, including patient demonstration. PEF measurements may have decreased utility in the elderly, those who have histories of rapid onset of severe airflow obstruction, and those who have trouble perceiving signs and symptoms of early worsening asthma.

Long-term daily peak flow monitoring can be helpful in detecting early changes in disease states that require treatment, evaluating responses to changes in therapy, and affording a quantitative measure of impairment. Long-term daily peak flow monitoring should be considered for patients who:

- Have moderate or severe persistent asthma
- Have a history of severe exacerbations
- Poorly perceive airflow obstruction and worsening asthma
- Prefer this monitoring method
Peak flow use during exacerbations will help determine the severity of the exacerbations and guide therapeutic decisions. Consider peak flow monitoring during exacerbations of asthma for patients who have:

- A history of severe exacerbations
- Moderate or severe persistent asthma
- Difficulty perceiving signs of worsening asthma

The frequency of PEF monitoring depends on the needs of the individual patient. A patient who is a poor perceiver of asthma symptoms may need to measure PEF every morning and evening, both before and after using inhaled medications, and when symptoms of asthma are noted. Another patient with more stable asthma may need to measure PEF only when experiencing symptoms or when they are at risk for an asthma flare, such as during an upper respiratory infection.

- Once baseline values are established (see *Peak Flow Monitoring* below), each patient’s personal best value must be re-evaluated annually to account for disease progression.

- In addition, the PEF measurements should be compared with office spirometry at least once per year, since the PEF in some cases has been less accurate than measurement of FEV₁ in detecting airflow obstruction.

Peak Flow Monitoring

Peak flow meters should be utilized according to the directions in *Appendix 11, Measuring Lung Function*. Baseline measures, as well as the establishment of green, yellow, and red zones for peak flow meters, should be made using the instructions in *Appendix 12, Establishing Baseline Measures for Peak Flow Monitoring*.

The accuracy of peak flow monitoring devices may decrease over time. Therefore, measurements that are at odds with the clinical status of the patient may be related to technical and not physiologic factors, and consideration should be given to reviewing technique with the patient or replacing the patient’s current device. If peak flow monitoring is performed, the written asthma action plan should use the patient’s personal best peak flow as the reference value.
6. Treatment of Asthma

Medications for the treatment of asthma include quick-relief and long-term control medications.

Specific medications prescribed for treating asthma, along with recommended dosages, are outlined in Appendix 8, Overview of Classes of Asthma Medications.

All inmates with asthma should be offered influenza vaccination annually and a pneumococcal vaccination in accordance with current Centers for Disease Control and Prevention guidelines.

Quick-Relief Medications

Short-Acting Beta₂-Agonists (SABAs)
Albuterol (a short-acting beta₂-agonist) is the therapy of choice for the relief of acute bronchospasm and for the prevention of exercise-induced bronchospasm (EIB). Albuterol should not be used as a "performance enhancer" in non-asthmatics. Nonselective agents such as epinephrine and metaproterenol are not recommended due to the potential for excessive cardiac stimulation.

Anticholinergics
Ipratropium is a first-line treatment for bronchospasms that are secondary to beta-blocker use. Anticholinergic agents are not effective in treating EIB.

Ipratropium is not to be used as a first-line agent for bronchodilation. It may serve as an alternative bronchodilator for inmates who do not tolerate inhaled beta₂-agonists. Ipratropium can be used in combination with an inhaled beta₂-agonist for additive benefit with the first three of multiple beta₂-agonist treatments for an acute exacerbation in moderate or severe asthma.

Tiotropium should not be utilized as a quick relief medication due to its delayed onset of action.

Systemic Corticosteroids
Systemic corticosteroids are indicated for moderate-to-severe exacerbations to speed recovery and prevent recurrence of exacerbations. During an asthma exacerbation, doubling the dose of an inhaled corticosteroid is not effective. Hydrocortisone sodium succinate or dexamethasone, given either intramuscular or intravenously, are the most rapid-acting agents; however, their onset of action is several hours. Short-term therapy should continue until the inmate achieves 80% of his/her personal best objective measures, usually 3–10 days.

Note: Tapering systemic steroids following clinical improvement after a short treatment course does not prevent relapse and is not recommended.

Long-Term Control Medications

Corticosteroids
Inhaled corticosteroid (ICS) formulations such as beclomethasone, mometasone, budesonide, and fluticasone are used for long-term control of asthma; their regular use, when medically indicated for asthma, is associated with improved asthma control, reduced risk of exacerbations, and decreased risk of death. Although the benefits of ICSs outweigh the risk of systemic adverse effects, they should be titrated to as low a dose as needed to maintain control. The NAEPP Expert Panel reported that most
patients were able to maintain asthma control with a 50% reduction in dose of their ICS, if the patient had been well-controlled on a high dose of an ICS alone for at least 60 days.

- See Appendix 9 for recommended dosing of inhaled corticosteroids.

Systemic corticosteroids such as methylprednisolone, prednisolone, and prednisone may be used long-term for the prevention of symptoms associated with severe persistent asthma.

Mast Cell Stabilizers

Cromolyn or nedocromil are mild-to-moderate potency, anti-inflammatory medications. The therapeutic efficacy of these agents may not be apparent for 4–6 weeks after the initiation of treatment. These agents are not routinely used for the treatment of asthma, but should be prescribed selectively and prophylactically to prevent asthma specifically related to exercise or unavoidable exposures to known allergens.

Long-Acting Beta_{2}-Agonists (LABAs)

Salmeterol and formoterol relax smooth muscle by selective action on beta_{2} receptors. Their action has minimal effect on heart rate and provides up to 12 hours of bronchodilation. They are used concomitantly with ICSs for long-term control of symptoms, especially nocturnal symptoms and for preventing exercise-induced bronchospasm. It has been shown that adding a LABA to a low-dose ICS reduces the frequency of exacerbations to a greater extent than doubling the dose of ICS; however, there are concerns about the potential risk of rare life-threatening or fatal exacerbations. Inhaled beta_{2}-agonists are preferred over oral agents, since they are longer-acting and have fewer side effects.

- LABAs are not to be used as monotherapy and should never be used to treat acute symptoms or exacerbations of asthma. Acute asthmatic episodes should be treated with short-acting beta_{2}-agonists.
- Caution should be used in patients with cardiovascular disorders, especially coronary insufficiency, cardiac arrhythmias, and hypertension. Symptoms such as increased blood pressure, heart rate, and anxiety can occur after the use of LABAs, and may require their discontinuation.
- LABAs should not be utilized if reversibility with a SABA cannot be demonstrated (characterized by an increase in FEV\textsubscript{1} of greater than 200 mL and greater than 12% from baseline).

Methylxanthines

Sustained release theophylline is a mild-to-moderate potency bronchodilator used as an alternative, although not preferred, adjunct to inhaled corticosteroids. These agents may also have a mild anti-inflammatory effect. Routine serum monitoring is essential, since theophylline has a narrow therapeutic range (5–15 mcg/ml) with potentially serious toxicities, drug interactions, and significant person-to-person variability.

Leukotriene Receptor Antagonists

Leukotriene receptor antagonists, zafirlukast and montelukast, exert their therapeutic effect by reducing leukotriene-mediated effects, including airway edema, smooth muscle contraction, and altered cellular activity associated with the inflammatory process. Zileuton is another medication
with the same pharmacokinetic effects as zafirlukast and montelukast; however, it is rarely used due to multiple pharmacological interactions and the requirement of frequent administration. Montelukast has fewer interactions than zileuton and is administered once daily.

Leukotriene modifiers offer the convenience of oral therapy, but are significantly less effective than inhaled corticosteroids.

Special Situations

Exercise Induced Bronchospasm (EIB)
- A SABA used shortly before exercise (or as close to exercise as possible) may be helpful in preventing symptoms for 2–3 hours.
- SABAs should not be used as a “performance enhancer” in non-asthmatics.
- Patients experiencing frequent, severe EIB may indicate poorly controlled asthma and therefore a need to initiate or increase daily, long-term control therapy.

Treatment in Pregnancy
- Providers should monitor pregnant patients’ asthma status during prenatal visits.
- Albuterol is the preferred SABA because it has an excellent safety profile; furthermore, the most data related to safety during human pregnancy are available for this medication.
- ICSs are the preferred treatment for long-term control medication in pregnant patients. Budesonide is the preferred ICS, as it has been studied more in pregnant patients than other ICSs.
- For the treatment of comorbid conditions, intranasal corticosteroids are recommended for treating allergic rhinitis because they have a low risk of systemic effect.

7. Step Therapy for Asthma

The BOP approach to treating asthma is a stepwise approach based on the NAEPP expert panel report. Clinicians should individualize treatment plans, as well as develop an individual action plan for inmates (see Appendices 17 and 18). Since the course of the disease is variable, once asthma control is achieved, monitoring is essential. At times it may be necessary to step up or down therapy. Stepping therapy down is necessary for identifying the minimum medication necessary to maintain control and minimizing the risk of adverse events.

➔ Once the provider assesses the inmate’s impairment and risk, the provider should refer to Appendix 5 to determine the level of care and to Appendix 6 for the corresponding treatment level. This can be accomplished both at initiation of therapy and during follow-up care.

Inhalers play a significant role in the treatment of asthma. When inmates start using any new inhaler device, they should be educated on proper technique. This education should be performed with the device present.
After the initiation of the treatment plan, a follow-up appointment in 2–6 weeks is recommended to assess the inmate’s response to the therapy. If the inmate is not well-controlled, the asthma education and self-care behaviors need to be assessed before advancing to the next step. At times, a course of oral systemic steroids may be necessary to regain control of an inmate’s asthma more quickly. After an inmate has been well-controlled on a drug therapy for at least 3 months, then a step-down in therapy can be considered. As part of the step-down consideration, the expert panel recommends an ICS reduction of 25–50% every 3 months to the lowest possible dose that is required to maintain asthma control.

STEP 1: Intermittent Asthma

At this stage in asthma therapy, a detailed asthma management plan should be in place. This plan should ensure that the inmate understands when and how a medication should be taken, how much to take, how to evaluate the response to therapy, when to seek medical care, and what to do when the desired effect is not achieved or side effects are encountered.

A short-acting inhaled bronchodilator (beta2-agonist) as needed for symptom control is usually sufficient treatment for intermittent asthma. Periodic monitoring is appropriate to assess whether a maintenance medication is necessary. If a SABA is required more than 2 times a week, then the inmate should be considered for a possible step-up in therapy.

For certain persons with intermittent asthma, severe life-threatening exacerbations may occur, separated by lengthy periods of normal pulmonary function without symptoms. For an exacerbation that is precipitated by a viral respiratory infection, the following is recommended:

- **Mild symptoms**: SABA every 4-6 hours for 24 hours or longer (nebulizer or MDI may be used)
- **Moderate-severe symptoms**: Short course of a systemic corticosteroid
- **History of severe exacerbations with viral respiratory infections**: Systemic corticosteroids at the first sign of infection

Note that SABA usage for exercise induced bronchospasm (EIB) or viral infections should not factor into this assessment. An inmate who is excessively using a SABA due to deconditioning, and has a decreased ability to exercise, does not necessarily require a step-up in treatment. The preemptive use of a SABA shortly before exercise will benefit inmates that experience EIB.

STEP 2: Mild Persistent Asthma

Persistent asthma should be treated with a daily “maintenance” medication. The most effective medications and the mainstay of asthma therapy are the inhaled corticosteroids (ICSs). At this stage of asthma severity, an ICS should be initiated at a low dose. Although some studies have looked at the usefulness of PRN ICS use in mild persistent asthma, there is no clear evidence of positive long-term outcomes. Therefore the BOP does not recommend intermittent usage of an ICS in asthma treatment.
Inmates with persistent asthma must have a quick-relief medication available to them. Alternative treatments include mast cell stabilizers, leukotriene modifiers (LTRAs), and sustained release theophylline.

Mast cell stabilizers (cromolyn and nedocromil) have a strong safety profile, but limited efficacy. LTRAs (e.g., montelukast) have been shown to prevent symptoms and provide long-term control, but studies have shown them to be inferior to ICSs on most outcome measures. Theophylline has a narrow therapeutic index, and thus needs to be monitored periodically. Given its modest clinical effectiveness, due primarily to being a bronchodilator, theophylline is not a preferred medication; however, it remains a therapeutic option for some inmates (e.g., inmate needing a tablet/capsule).

Some inmates may have persistent asthma symptoms during certain seasons and intermittent symptoms the rest of the year. Consideration should be given to treat these inmates with maintenance therapy during the affected season and step them down the rest of the year.

STEP 3: Moderate Persistent Asthma

An inmate requiring a step-up in therapy should have their inhaler technique and compliance reviewed. Environmental factors, as well as comorbid conditions could be attributing to an inmate’s worsening asthma, and should be taken into account. Consultation with an asthma specialist may also be considered at this stage.

The ICS should be increased to a medium dose (see Appendix 9). For most inmates, this increase should improve lung function, reduce symptoms, and significantly reduce their risk of exacerbations. While taking an ICS at a medium dose can cause systemic side effects, the risk is small, due to limited systemic absorption.

Alternative therapies include maintaining the low-dose ICS with the addition of either an LTRA or theophylline; however, as in Step 2, these medications are not preferred.

STEP 4: Severe Persistent Asthma

Step 4 of care requires adding a LABA to the inmate’s medication regimen. The addition of a LABA has been shown to improve spirometric measurements, decrease symptoms, and reduce exacerbations in most people. Providers should be aware of the black box warning for rare life-threatening or fatal exacerbations associated with LABAs. With the addition of a LABA, the provider may be able to slightly decrease the dose of the ICS.

An alternative therapy would be the use of a high-dose ICS regimen. While high doses of ICS have shown only minimal improvements in LFTs, they can decrease the frequency of severe exacerbations. High doses of ICS do have a significantly higher risk of adverse effects. However, a high-dose ICS regimen may prove beneficial for patients who do not show significant reversibility to a short-acting bronchodilator, thereby preventing the use of a LABA. Significant reversibility can be characterized by an increase in FEV₁ of greater than 200 mL and greater than 12% from baseline.

Other alternative therapies include the addition to the low-dose ICS of either an LTRA or theophylline; however, as in Step 2, these medications are not preferred. If an add-on therapy does
not result in an improvement of the inmate’s asthma control, then it should be discontinued and a trial of another add-on therapy should be initiated.

Step 4 therapy is also appropriate for inmates who experience recurrent severe exacerbations.

STEP 5: Severe Persistent Asthma

Consultation with an asthma specialist may be prudent if an inmate requires this step of treatment. High-dose ICS together with a LABA is recommended. Although studies have shown a flattening in the dose-response curve as the amount of ICS is increased in patients with mild to moderate asthma, patients with severe asthma continue to receive improved benefit.

At this step, if an inmate has sensitivity to relevant perennial allergens, omalizumab may be considered as an adjunctive therapy. A positive skin test or in vitro reactivity to perennial allergens must be confirmed. Clinicians who administer omalizumab should be prepared and equipped to identify and treat anaphylaxis.

STEP 6: Severe Persistent Asthma

At this step, consult with a pulmonary specialist is advised. An oral corticosteroid should be added to high-dose ICS and LABA on a trial basis. This trial is to assess reversibility; hence the need for long-term corticosteroid therapy. If corticosteroids need to be used for a longer period of time, then the lowest possible dose (single dose daily or on alternate days) should be utilized. Once asthma control is achieved, attempts should be made to reduce the systemic corticosteroids. Alternatively, a trial of an LTRA, theophylline, or zileuton can be added to high-dose ICS and LABA.

8. Asthma Exacerbation Management

Decreases in expiratory airflow characterize an asthma exacerbation. Symptoms can include progressively worsening shortness of breath, cough, wheezing, and chest tightness. Objective information gives a more reliable indication of the severity of an exacerbation. Therefore, exacerbations should be quantified by measuring the inmate’s decrease in expiratory airflow with a spirometer (if readily available) or peak flow meter.

Early recognition of exacerbations results in the best outcomes for patients. For this reason, an asthma action plan is an important tool in enabling patients to self-monitor and respond appropriately (see Appendices 17 and 18, sample action plans in English and Spanish). An inmate’s first step to countering an acute worsening of their asthma is to utilize a quick-relief medication (albuterol). If adequate relief is not obtained and the symptoms are worsening, they should report to health services.

When an inmate presents with a possible asthma exacerbation, the severity should be assessed first, and then appropriate clinical actions taken. FEV₁ or PEF should be obtained on arrival and approximately 30 minutes after initial treatment. Pulse oximetry measurements are useful to assess severity and improvement with treatment. A brief history can be obtained upon admission to HSU to identify the time of onset and potential causes of the current exacerbation, as well as the severity of symptoms compared to prior exacerbations and response to therapy for those exacerbations.
Table 6. Severity of Asthma Exacerbation

<table>
<thead>
<tr>
<th>Severity</th>
<th>Symptoms & Signs</th>
<th>Initial PEF (or FEV$_1$)</th>
<th>Clinical Course</th>
</tr>
</thead>
</table>
| Mild | Dyspnea only with activity | PEF ≥70% predicted or personal best | • Usually does not require HSU visit
• Prompt relief with inhaled quick-relief medications
• Possible short course of oral systemic corticosteroids |
| Moderate | Dyspnea interferes with or limits usual activity | PEF 40–69% predicted or personal best | • Usually requires visit to HSU
• Relief from frequent inhaled quick-relief medications
• Oral systemic corticosteroids
• Some symptoms last for 1–2 days after treatment is begun |
| Severe | • Dyspnea while at rest
• Interferes with conversation | PEF <40% predicted or personal best | • Usually requires ED visit and likely hospitalization
• Partial relief from frequent inhaled quick-relief medications
• Oral systemic corticosteroids
• Symptoms may last for >3 days after treatment has begun
• Adjunctive therapies are helpful |
| Life-Threatening | • Too dyspneic to speak
• Perspiring | PEF <25% predicted or personal best | • Requires ED/hospitalization—possible ICU
• Minimal or no relief from frequent inhaled SABA
• Intravenous corticosteroids
• Adjunctive therapies are helpful |

The treatment goals for asthma exacerbation management are as follows:

1. **Reverse airflow obstruction.**

 Repetitive administration of a SABA via MDI or nebulizer has the best results for reversing an airflow obstruction, but inmates with moderate or severe exacerbations or who fail to respond promptly to SABA treatment will need a course of systemic corticosteroids.

2. **Correct hypoxemia.**

 Oxygen supplementation is needed to correct significant hypoxemia in moderate to severe exacerbations.

3. **Prevent relapse.**

 The incidence of relapse can be reduced by utilizing short courses of oral corticosteroids, and continuing more intensive treatment for several days, depending on severity, after an exacerbation. Doubling the dose of an inhaled corticosteroid has not been shown to be an effective treatment for exacerbations, but higher doses may be an alternative for patients who have significant adverse effects to systemic corticosteroids. Upon completion of this intensive treatment the inmate can be placed back onto their previous maintenance regimen.
Table 7. Dosages of Drugs for Asthma Exacerbations

<table>
<thead>
<tr>
<th>Medication</th>
<th>Dose/Duration</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inhaled Short-Acting Beta₂-Agonist (SABA)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Albuterol (nebulizer)</td>
<td>2.5–5 mg every 20 minutes x 3 doses</td>
<td>Onset of action ≤ 5 minutes: Significant response expected after 1st dose.</td>
</tr>
<tr>
<td></td>
<td>Then, 2.5–10 mg every 1–4 hours PRN, or 10–15 mg/hour continuously</td>
<td>Repeat dosing does not equal incremental bronchodilation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Initial 3 doses sufficient for most exacerbations</td>
</tr>
<tr>
<td>Albuterol (MDI, 90 mcg/puff)</td>
<td>4–8 puffs every 20 minutes up to 4 hours</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Then, every 1–4 hours PRN</td>
<td></td>
</tr>
<tr>
<td>Anticholinergics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ipratropium (nebulizer)</td>
<td>0.5 mg every 20 minutes for 3 doses</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Then, PRN</td>
<td></td>
</tr>
<tr>
<td>Combination Agents</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ipratropium/Albuterol (nebulizer)</td>
<td>3 mL every 20 minutes for up to 3 doses per episode</td>
<td>Then, scheduled dosing for those with severe exacerbations</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Systemic Corticosteroids</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prednisone</td>
<td>40–60 mg in single dose or 2 divided doses daily, for 3–10 days</td>
<td>In most cases, oral therapy is preferred over IV therapy, and tapering is unnecessary. (See note in text below.)</td>
</tr>
<tr>
<td>Methylprednisolone</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prednisolone</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Due to similar efficacy, oral therapy is preferred over intravenous therapy as long as there is no impairment to the gastrointestinal system and compliance is not a concern. There is no advantage to using higher doses of corticosteroids in severe asthma exacerbations.

Note: Tapering is not necessary for corticosteroid courses of less than 1 week, and probably not needed for courses up to 10 days (especially if the inmate is taking an ICS).

The following treatments are NOT recommended for treating exacerbations:
- Methylxanthines
- Antibiotics (unless as needed for comorbid conditions)
- Aggressive hydration
- Mucolytics
Hospitalization

The decision to hospitalize an inmate should be based on the inmate’s history and severity of prior exacerbations, the severity of present signs and symptoms, the response to emergency treatment, and the duration of unresolved symptoms. Severe airflow obstruction, demonstrated by signs of impending respiratory failure such as the inability to speak, declining mental clarity, or worsening of respiratory muscle fatigue requires immediate referral to a local emergency department regardless of other associated factors.

Compliance

An inmate’s compliance with prescribed asthma medications should be reviewed. Treatment failure is often due to compliance issues such as failure to use medications correctly or frequently enough to prevent exacerbations.

Asthma self-management education is an essential component in achieving positive outcomes and improved asthma control. Effective patient education, including individualized action plans, leads to improved asthma knowledge and skills for self-management. These self-management skills can reduce the number of hospitalizations, as well as improve quality of life by reducing symptoms and lessening limitation of activity. Proper patient education can also afford better medication utilization and compliance.

Effective patient education includes the following components, which are discussed in more detail below:

- Basic facts defining asthma
- Definition of well-controlled asthma
- Basic facts about asthma medications
- Proper technique for inhalers
- Identifying and managing asthma triggers
- How to use a peak flow meter
- When and how to address worsening asthma
- How to use a metered dose inhaler

Basic Facts Defining Asthma

Patients should be provided with basic information about asthma. Asthma education is most effective when provided at the time of diagnosis with supplementation and reinforcement at every encounter. Education should include information on day-to-day and acute management with prescribed adjustments of medications. Concepts such as inflammation, bronchoconstriction, chronicity of disease, and levels of control should be addressed.

→ See Appendix 13 and Appendix 14, patient fact sheets about asthma in English and Spanish.
Basic Facts about Asthma Medications

For optimal self-management, patients need to be educated about their medication, especially how and when to use them. Regardless of the delivery device selected, detailed education on the use and maintenance of the device is necessary. The package inserts provided with these products often include detailed diagrams explaining proper technique. The patient should be able to demonstrate good technique initially and with each follow-up visit. Reinforcement of proper technique ensures proper delivery of medication.

Although numerous patients utilize metered dose inhalers (MDI) each day, many do not operate them correctly. As a result, both the provider and the patient may be unaware of improper usage and incorrectly assume a medication is ineffective. This may lead prescribers to unnecessarily change or step up therapy.

In order to promote the effective use of an inhaler, providers should:

- At each routine encounter, have the patient demonstrate using the MDI by performing an actual inhalation.
- Prescribe inhalers with valved holding chambers or require the use of a spacer with the prescribed MDI for those patients who cannot demonstrate adequate technique.
- Educate the patient on how many inhalations should be used at one time. For example, if the instructions say to utilize two puffs, how long should the patient wait after each puff?
- Educate the patient on the order in which inhalers should be used. For example, should the patient use a beta-agonist before using a corticosteroid?

Identifying and Managing Asthma Triggers

Assisting patients with identification of asthma triggers promotes good asthma control. Understanding associations of symptoms with inhaled allergen exposure can also play a significant role in patient self-management. Patients instructed to monitor their symptoms in relation to workplace exposure to chemicals, dust, or smoke can provide insight about changes that may promote better control.

How to Use a Peak Flow Meter

Some patients have difficulty describing or recognizing changes in their level of asthma control. Peak flow meters provide an objective measure to help patients identify changes and take steps to treat and prevent exacerbations. The patient should be instructed in proper technique and how to utilize the results. Using a peak flow meter can help patients make optimal use of a written asthma action plan.

See Appendices 15 and 16, patient fact sheets on peak flow meters, in English and Spanish.
Written Asthma Action Plan

A written asthma action plan provides patients with a step-by-step approach for monitoring asthma control. The written asthma action plan includes the individualized medication regimen for daily control, as well as a plan of action for worsening asthma symptoms. The patient should be included in the development of the action plan, and the plan should be addressed at follow-up visits to ensure that patients appropriately manage exacerbations.

See Appendices 17 and 18, sample action plans in English and Spanish.
References

Fanta C. Diagnosis of asthma in adolescents and adults. *UpToDate*, September 10, 2012. Available at: http://www.uptodate.com/content/diagnosis-of-asthma-in-adolescents-and-adults?source=search_result&search=asthma&selectedTitle=3%7E150

Appendix 1. OVERVIEW: Diagnosis and Management of Asthma
(for Patients Not Currently Taking Long-Term Control Medications)

Establish Diagnosis
(see Appendices 2, 3, & 4)

Classify Severity
as intermittent, mild persistent, moderate persistent, or severe persistent
(see Appendix 5)

Components of Impairment:
- Symptoms
- Nighttime awakenings
- Short-acting beta_2-agonist use for symptom control
- Interference with normal activity
- Lung function

Components of Risk:
- Frequency of exacerbations requiring oral systemic corticosteroids

Initiate Stepwise Therapy
at Step 1, 2, 3, 4, or 5, depending on severity
(see Appendices 5 & 6)

Assess Asthma Control
as well-controlled, not well-controlled, or very poorly controlled
(see Appendix 7)

Components of Impairment:
- Symptoms
- Nighttime awakenings
- Interference with normal activity
- Short-acting beta_2-agonist use for symptom control
- FEV_1 or peak flow
- Validated questionnaires

Components of Risk:
- Frequency of exacerbations requiring oral systemic corticosteroids
- Progressive loss of lung function
- Treatment-related adverse effects

Adjust Therapy and Continue to Monitor
(see Appendices 6 & 7)
Appendix 2. Methods for Establishing the Diagnosis

Detailed medical history, in particular:
- Overall pattern of symptoms (e.g., perennial, seasonal, or both; continual, episodic, or both; diurnal variations)
- Precipitating factors (such as the presence of allergic triggers)
- Family history of asthma, allergy, or other atopic disorders

Physical examination, in particular:
- Upper respiratory tract
- Chest
- Skin

Spirometry:
- An objective, reliable measure
- Can be used to establish reversibility (as opposed to peak flow meters which are used for monitoring and are not diagnostic)

Exclusion of alternative diagnoses

Notes:
- *In general, a diagnosis of asthma is established if (1) episodic symptoms of airflow obstruction or airway hyperresponsiveness are present, (2) airflow obstruction is at least partially reversible as measured by spirometry, and (3) alternative diagnoses are excluded.*
- See [Table 1](#) for key indicators in diagnosing asthma.
Appendix 3. Sample Questions for the Diagnosis and Initial Assessment of Asthma

A “yes” answer to any of these questions suggests that an asthma diagnosis is likely.

<table>
<thead>
<tr>
<th>In the past 12 months ...</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Have you had a sudden severe episode or recurrent episodes of coughing, wheezing (high-pitched whistling sounds when breathing out), chest tightness, or shortness of breath?</td>
</tr>
<tr>
<td>• Have you had colds that “go to the chest” or take more than 10 days to get over?</td>
</tr>
<tr>
<td>• Have you had coughing, wheezing, or shortness of breath during a particular season or time of the year?</td>
</tr>
<tr>
<td>• Have you had coughing, wheezing, or shortness of breath in certain places or when exposed to certain things (e.g., animals, tobacco smoke, perfumes)?</td>
</tr>
<tr>
<td>• Have you used any medications that help you breathe better? How often?</td>
</tr>
<tr>
<td>• Are your symptoms relieved when the medications are used?</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>In the past 4 weeks, have you had coughing, wheezing, or shortness of breath ...</th>
</tr>
</thead>
<tbody>
<tr>
<td>• At night that has awakened you?</td>
</tr>
<tr>
<td>• Upon awakening?</td>
</tr>
<tr>
<td>• After running, moderate exercise, or other physical activity?</td>
</tr>
</tbody>
</table>

These questions are examples and do not represent a standardized assessment or diagnostic instrument. The validity and reliability of these questions have not been assessed.
Appendix 4. Suggested Items for Detailed Medical History

| The medical history of a new patient who is known or thought to have asthma should address the following items: |
|---|---|
| **1. Symptoms** | **5. Family History** |
| • Cough | • History of asthma, allergy, sinusitis, rhinitis, eczema, or nasal polyps in close relatives |
| • Wheezing | **6. Social History** |
| • Shortness of breath | • Workplace characteristics that may interfere with adherence |
| • Chest tightness | • Social factors that interfere with adherence, such as substance abuse |
| • Sputum production | • Social support/social networks |
| **2. Pattern of Symptoms** | • Level of education completed |
| • Perennial, seasonal, or both | • Employment |
| • Continual, episodic, or both | **7. History of Exacerbations** |
| • Onset, duration, frequency (number of days or nights, per week or month) | • Usual prodromal signs and symptoms |
| • Diurnal variations, especially nocturnal and on awakening in early morning | • Rapidly of onset |
| **3. Precipitating and/or Aggravating Factors** | • Duration |
| • Viral respiratory infections | • Frequency |
| • Environmental allergens, indoor (e.g., mold, house-dust mite, cockroach, animal dander or secretory products) and outdoor (e.g., pollen) | • Severity (need for urgent care, hospitalization, ICU admission) |
| • Characteristics of home including age, location, cooling and heating system, wood-burning stove, humidifier, carpeting over concrete, presence of molds or mildew, characteristics of rooms where patient spends time (e.g., bedroom and living room with attention to bedding, floor covering, stuffed furniture) | • Life-threatening exacerbations (e.g., intubation, ICU admission) |
| • Smoking (patient and others in home or daycare) | • Number and severity of exacerbations in the past year. |
| • Exercise | • Usual patterns and management (what works?) |
| • Occupational chemicals or allergens | **8. Impact of Asthma on Patient and Family** |
| • Environmental change (e.g., moving; and/or alterations in workplace, work processes, or materials used) | • Episodes of unscheduled care (ED, urgent care hospitalization) |
| • Irritants (e.g., tobacco smoke, strong odors, air pollutants, occupational chemicals, dusts and particulates, vapors, gases, and aerosols) | • Number of days missed from work |
| • Emotions (e.g., fear, anger, frustration, hard laughing) | • Limitation of activity, especially sports and strenuous work |
| • Stress (e.g., fear, anger, frustration) | • History of nocturnal awakening |
| • Drugs (e.g., aspirin; and other nonsteroidal anti-inflammatory drugs, beta-blockers including eye drops, others) | • Effect on growth, development, behavior, work performance, and lifestyle |
| • Food, food additives, and preservatives (e.g., sulfites) | • Impact on family routines, activities, or dynamics |
| • Changes in weather, exposure to cold air | • Economic impact |
| • Endocrine factors (e.g., menses, pregnancy, thyroid disease) | **9. Assessment of Patient’s and Family’s Perceptions of Disease** |
| • Comorbid conditions (e.g. sinusitis, rhinitis, GERD) | • Patient’s, and spouse’s or partner’s knowledge of asthma and belief in the chronicity of asthma and in the efficacy of treatment |
| **4. Development of Disease and Treatment** | • Patient’s perception and beliefs regarding use and long-term effects of medications |
| • Age of onset and diagnosis | • Ability of patient, spouse, or partner to cope with disease |
| • History of early-life injury to airways (e.g., bronchopulmonary dysplasia, pneumonia, parental smoking) | • Level of family support and patient’s and spouse’s, or partner’s capacity to recognize severity of an exacerbation |
| • Progression of disease (better or worse) | • Economic resources |
| • Present management and response, including plans for managing exacerbations | • Sociocultural beliefs |
| • Frequency of using SABA | **This list does not represent a standardized assessment or diagnostic instrument. The validity and reliability of this list have not been assessed.** |

26
Appendix 5. Classifying Asthma Severity and Initiating Treatment

(for Patients Not Currently Taking Long-Term Control Medications)

<table>
<thead>
<tr>
<th>Components of Severity</th>
<th>Classification of Asthma Severity</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Intermittent</td>
</tr>
<tr>
<td>Impairment</td>
<td></td>
</tr>
<tr>
<td>Symptoms</td>
<td>≤2 days/week</td>
</tr>
<tr>
<td>Nighttime awakenings</td>
<td>≤2x/month</td>
</tr>
<tr>
<td>Short-acting beta2-agonist use for symptom control (not prevention of EIB)</td>
<td>≤2 days/week</td>
</tr>
<tr>
<td>Interference with normal activity</td>
<td>None</td>
</tr>
<tr>
<td>Lung function</td>
<td></td>
</tr>
<tr>
<td>Normal FEV1/FEV6:</td>
<td></td>
</tr>
<tr>
<td>< 20 yr</td>
<td>85%</td>
</tr>
<tr>
<td>20–39 yr</td>
<td>80%</td>
</tr>
<tr>
<td>40–59 yr</td>
<td>75%</td>
</tr>
<tr>
<td>60–80 yr</td>
<td>70%</td>
</tr>
<tr>
<td>• Normal FEV1 between exacerbations</td>
<td>• FEV1 >80% predicted</td>
</tr>
<tr>
<td>• FEV1/FEV6 normal</td>
<td>• FEV1/FEV6 normal</td>
</tr>
<tr>
<td>Risk</td>
<td></td>
</tr>
<tr>
<td>Exacerbations requiring oral systemic corticosteroids</td>
<td>0–1/year²</td>
</tr>
<tr>
<td></td>
<td>Consider severity and interval since last exacerbation. Frequency and severity may fluctuate over time for patients in any severity category. Relative annual risk of exacerbations may be related to FEV1.</td>
</tr>
</tbody>
</table>

Recommended Step for Initiating Treatment

(See Appendix 6 for treatment steps.)

<table>
<thead>
<tr>
<th>For intermittent:</th>
<th>For mild persistent:</th>
<th>For moderate persistent:</th>
<th>For severe persistent:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Step 2</td>
<td>Step 3</td>
<td>Step 4, 5, or 6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>For Steps 3–6, consider adding short course of oral systemic corticosteroids.</td>
<td></td>
</tr>
</tbody>
</table>

In 2–6 weeks, evaluate the level of asthma control that has been achieved and adjust therapy accordingly.

Key: EIB = exercise-induced bronchospasm; FEV1 = forced expiratory volume in 1 second; FEV6 = forced expiratory volume in 6 seconds; ICU = intensive care unit

Notes:

1. Level of severity is determined by assessment of both impairment and risk. Assess impairment domain by patient’s/caregiver’s recall of previous 2–4 weeks and spirometry. **Assign severity to the most severe category in which any feature occurs.**

2. At present, there are inadequate data to correspond frequencies of exacerbations with different levels of asthma severity. In general, more frequent and intense exacerbations (e.g., requiring urgent, unscheduled care, hospitalization, or ICU admission) indicate greater underlying disease severity. For treatment purposes, patients who had ≥2 exacerbations requiring oral systemic corticosteroids in the past year may be considered the same as patients who have persistent asthma, even in the absence of impairment levels consistent with persistent asthma.

3. The stepwise approach is meant to assist, not replace, the clinical decision-making required to meet individual patient needs.
Appendix 6. Stepwise Approach for Managing Asthma

Intermittent Asthma

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Preferred:</th>
<th>SABA PRN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 2</td>
<td>Preferred:</td>
<td>low-dose ICS</td>
</tr>
<tr>
<td>Alternative:</td>
<td>cromolyn, LT, nedocromil, or theophylline</td>
<td></td>
</tr>
</tbody>
</table>

| Step 3 | Preferred: | medium-dose ICS |
| Alternative: | low-dose ICS + either LTRA or theophylline |

| Step 4 | Preferred: | high-dose ICS + LABA |
| Alternatively: | high-dose ICS OR medium-dose ICS + either LTRA or theophylline |

| Step 5 | Preferred: | high-dose ICS + LABA |
| AND | Consider omalizumab for patients who have allergies. |

| Step 6 | Preferred: | high-dose ICS + LABA + oral corticosteroid |
| AND | Consider omalizumab for patients who have allergies. |

Quick-Relief Medication for all Patients:
- SABA as needed for symptoms. Intensity of treatment depends on severity of symptoms: up to 3 treatments at 20-minute intervals as needed. Short course of oral systemic corticosteroids may be needed.
- Use of SABA >2 days/week for symptom relief (not prevention of EIB) generally indicates inadequate control and the need to step-up treatment.

Key: Alphabetical order is used when more than one treatment option is listed within either preferred or alternative therapy. ICS = inhaled corticosteroid; LABA = long-acting inhaled beta2-agonist; LTRA = leukotriene receptor antagonist; SABA = inhaled short-acting beta2-agonist

The stepwise approach is meant to assist, not replace, the clinical decision-making required to meet individual patient needs.

Stepping up/down: Step-down only if asthma is well-controlled for at least 3 months. Before stepping-up, check adherence, environmental control, comorbid conditions, and if adding medication, refer to formulary criteria.

At Steps 3–6: Consult with asthma specialist if Step 4 or higher is required; consider consultation at Step 3.

At Steps 2–4: Consider subcutaneous allergen immunotherapy for patients who have allergic asthma. Immunotherapy should only be considered after consultation with the Regional Medical Director.

At Steps 1–6: Provide patient education, environmental control, and management of comorbidities.

Notes:
1. If alternative treatment is used and response is inadequate, discontinue it and use the preferred treatment before stepping up. Zileuton is a less desirable alternative due to limited studies as adjunctive therapy and the need to monitor liver function. Theophylline requires monitoring of serum concentration levels. In step 6, before oral corticosteroids are introduced, a trial of high-dose ICS + LABA + either LTRA, theophylline, or zileuton may be considered, although this approach has not been studied in clinical trials.
2. Step 1, 2, and 3 preferred therapies are based on Evidence A; step 3 alternative therapy is based on Evidence A for LT, Evidence B for theophylline. Step 4 preferred therapy is based on Evidence B, and alternative therapy is based on Evidence B for LT and theophylline. Step 5 preferred therapy is based on Evidence B. Step 6 preferred therapy is based on (EPR—2 1997) and Evidence B for omalizumab.
3. Clinicians who administer immunotherapy or omalizumab should be prepared and equipped to identify and treat anaphylaxis that may occur.
4. Immunotherapy for steps 2–4 is based on Evidence B for house-dust mites, animal danders, and pollens; evidence is weak or lacking for molds and cockroaches. Evidence is strongest for immunotherapy with single allergens. The role of allergy in asthma is greater in children than in adults.
Appendix 7. Assessing Asthma Control and Adjusting Therapy

<table>
<thead>
<tr>
<th>Components of Control</th>
<th>Classification of Asthma Control</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Well-Controlled</td>
</tr>
<tr>
<td>Impairment</td>
<td></td>
</tr>
<tr>
<td>Symptoms</td>
<td>≤2 days/week</td>
</tr>
<tr>
<td>Nighttime awakneings</td>
<td>≤2x/month</td>
</tr>
<tr>
<td>Interference with normal activity</td>
<td>None</td>
</tr>
<tr>
<td>Short-acting beta₂-agonist use for symptom control (not prevention of EIB)</td>
<td>≤2 days/week</td>
</tr>
<tr>
<td>FEV₁ or peak flow</td>
<td>>80% predicted/ personal best</td>
</tr>
<tr>
<td>Validated questionnaires:¹</td>
<td>⁰</td>
</tr>
<tr>
<td>• ATAQ</td>
<td>⁰</td>
</tr>
<tr>
<td>• ACQ</td>
<td>≤0.75³</td>
</tr>
<tr>
<td>• ACT</td>
<td>≥20</td>
</tr>
<tr>
<td>Risk</td>
<td>⁰</td>
</tr>
<tr>
<td>Exacerbations requiring oral systemic corticosteroids</td>
<td>⁰–1/year</td>
</tr>
<tr>
<td>Progressive loss of lung function</td>
<td>Evaluation requires long-term follow-up care.</td>
</tr>
<tr>
<td>Treatment-related adverse effects</td>
<td>Medication side-effects can vary in intensity from none to very troublesome and worrisome. The level of intensity does not correlate to specific levels of control, but should be considered in the overall assessment of risk.</td>
</tr>
<tr>
<td>Recommended Action for Treatment ⁵, ⁶ (See Appendix 6 for treatment steps.)</td>
<td>If well-controlled:</td>
</tr>
<tr>
<td></td>
<td>• Maintain current step.</td>
</tr>
<tr>
<td></td>
<td>• Regular follow-up at every 1–6 months to maintain control.</td>
</tr>
<tr>
<td></td>
<td>• Consider step down if well-controlled for at least 3 months.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Key: EIB = exercise-induced bronchospasm; ICU = intensive care unit

Notes:

¹ Level of control is based on the most severe impairment or risk category. Assess impairment domain by patient’s recall of previous 2–4 weeks and by spirometry or peak flow measures. Symptom assessment for longer periods should reflect a global assessment, such as inquiring whether the patient’s asthma is better or worse since the last visit.

² ATAQ = Asthma Therapy Assessment Questionnaire®; ACQ = Asthma Control Questionnaire®; ACT = Asthma Control Test™; Minimal Important Difference: 1.0 for the ATAQ, 0.5 for the ACQ, not determined for the ACT.

³ ACQ values of 0.76–1.4 are indeterminate regarding well-controlled asthma.

⁴ At present, there are inadequate data to correspond frequencies of exacerbations with different levels of asthma control. In general, more frequent and intense exacerbations (e.g., requiring urgent, unscheduled care, hospitalization, or ICU admission) indicate poor disease control. For treatment purposes, patients who had ≥2 exacerbations requiring oral systemic corticosteroids in the past year may be considered the same as patients who have not well-controlled asthma, even in the absence of impairment levels consistent with not well controlled asthma.

⁵ The stepwise approach is meant to assist, not replace, the clinical decision-making required to meet individual patient needs.

⁶ Before step-up in therapy: Review adherence to medication, inhaler technique, environmental control, and comorbid conditions. If an alternative treatment option was used in a step, discontinue and use the preferred treatment for that step.
Appendix 8. Overview of Classes of Asthma Medications

<table>
<thead>
<tr>
<th>Medication Class</th>
<th>Examples</th>
<th>Mechanism</th>
<th>Mode of Administration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Long-Term Controller Medications</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ICSs</td>
<td>• Budesonide</td>
<td>Anti-inflammatory</td>
<td>Inhaled once or twice daily</td>
</tr>
<tr>
<td></td>
<td>• Beclomethasone</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Ciclesonide</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Fluticasone</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Mometasone</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LABAs</td>
<td>• Salmeterol</td>
<td>Bronchodilator</td>
<td>Inhaled twice daily</td>
</tr>
<tr>
<td></td>
<td>• Formoterol</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Combination LABA/ICS</td>
<td>• Salmeterol/fluticasone</td>
<td>Combination anti-inflammatory/bronchodilator</td>
<td>Inhaled twice daily</td>
</tr>
<tr>
<td></td>
<td>• Formoterol/budesonide</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leukotriene modifiers</td>
<td>• Montelukast</td>
<td>Anti-inflammatory and bronchodilatory effects</td>
<td>Oral (once daily for montelukast, four times a day for zileuton)</td>
</tr>
<tr>
<td></td>
<td>• Zileuton</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mast cell stabilizers</td>
<td>• Cromolyn</td>
<td>Anti-inflammatory (stabilizes mast cells and interferes with chloride channel function)</td>
<td>Inhaled 4 times daily</td>
</tr>
<tr>
<td></td>
<td>• Nedocromil</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Methylxanthines</td>
<td>• Theophylline</td>
<td>Bronchodilators; may have mild anti-inflammatory effects</td>
<td>Oral (liquid, sustained-release tablets, and capsules)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quick-Relief Agents</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SABAs</td>
<td>• Albuterol</td>
<td>Bronchodilator</td>
<td>Inhaled every 4–6 hours, as needed</td>
</tr>
<tr>
<td></td>
<td>• Levalbuterol</td>
<td></td>
<td>Exercise-induced asthma: Use 15 minutes prior to exercise (not to be used as a "performance enhancer" in non-asthmatics).</td>
</tr>
<tr>
<td></td>
<td>• Pirbuterol</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anticholinergic</td>
<td>• Ipratropium bromide³</td>
<td>Bronchodilator (inhibits muscarinic cholinergic receptors), reduces intrinsic vagal tone of the airways</td>
<td>Inhaled every 6 hours during moderate or severe asthma exacerbations</td>
</tr>
<tr>
<td>Oral corticosteroids</td>
<td>• Methylprednisolone</td>
<td>Anti-inflammatory</td>
<td>Oral (often given in short-course bursts during exacerbations)</td>
</tr>
<tr>
<td></td>
<td>• Prednisolone</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Prednisone</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Key:
ICS = inhaled corticosteroid; LABA = long-acting β-agonist; SABA = short-acting β-agonist; SC = subcutaneous

1 Mast cell stabilizers are usually used only prophylactically to prevent asthma specifically related to exercise or unavoidable exposures to known allergens.

2 Tiotropium should not be utilized as a quick relief medication due to its delayed onset of action.

3 Ipratropium bromide has not demonstrated effectiveness in long-term management of asthma.
Appendix 9. Inhaled Corticosteroids Dosing Chart

<table>
<thead>
<tr>
<th>Inhaled Steroid</th>
<th>Low Dose</th>
<th>Medium Dose</th>
<th>High Dose</th>
</tr>
</thead>
</table>
| **Beclomethasone HFA**
40mcg or 80mcg | 80–240 mcg
Initial: 80mcg BID | 240–480 mcg
Initial: 160mcg BID | >480mcg
Max: 320mcg BID |
| **Budesonide**
90mcg or 180mcg | 180–600 mcg
Initial: 180mcg BID | 600–1200 mcg
Initial: 360mcg BID | >1200mcg
Max: 720mcg BID |
| **Fluticasone HFA**
44mcg, 110mcg, or 220 mcg | 88–264 mcg
Initial: 88mcg BID | >264–440 mcg
Initial: 220mcg BID
(110mcg 2 puffs BID) | >440mcg
Max: 880mcg BID |
| **Mometasone Furoate**
110mcg or 220mcg | 220 mcg
Initial: 220mcg daily | 440 mcg
Initial: 440mcg daily or 220mcg BID | >440mcg
Max: 440mcg BID |
| **Fluticasone/Salmeterol**
100/50mcg, 250/50mcg,
or 500/50mcg | 100–300 mcg*
Initial: 100/50mcg BID | >300–500 mcg*
Initial: 250/50mcg BID | >500mcg*
Max: 500/50 mcg BID |
| **Budesonide/Formoterol**
80/4.5mcg or 160/4.5mcg | 320–640 mcg**
Initial: 80/4.5mcg two puffs BID | 640mcg**
Max: 160/4.5mcg two puffs BID |
| **Flunisolide**
250mcg | 500–1000 mcg
Initial: 500mcg BID | 1000–2000 mcg
Max: 1000mcg BID |

* Low, medium, and high dosing of fluticasone/salmeterol is determined by the dose of fluticasone administered.

** Medium, high, and max dosing of budesonide/formoterol is determined by the dose of budesonide administered.
Appendix 10. Patient Self-Assessment Questionnaire

Asthma Self-Assessment Questionnaire
for Adults (18 years or older)

<table>
<thead>
<tr>
<th>Patient’s name:</th>
<th>ID number:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Provider's name:</td>
<td>Date: / /</td>
</tr>
</tbody>
</table>

Read each question below. Check one answer for each question. Enter the value of your answer (0 or 1) below.

1. During the past 4 weeks:
 a. Did you miss any work or normal daily activity because of asthma?
 - Yes (1)
 - No (0)
 - Unsure (1)

 b. Did you wake up at night because of asthma?
 - Yes (1)
 - No (0)
 - Unsure (1)

 c. Did you believe that your asthma was well controlled?
 - Yes (1)
 - No (0)
 - Unsure (1)

2. Do you use an inhaler for quick relief from asthma symptoms?
 - Yes (1)
 - No (0)
 - Unsure (1)

 If yes:
 In the past 4 weeks, what was the highest number of puffs in 1 day you took of the inhaler?
 - 0 (0)
 - 1 to 4 puffs (0)
 - 5 to 8 puffs (1)
 - 9 to 12 puffs (1)
 - More than 12 puffs (1)

3. During the past 4 weeks, how often have you used your rescue inhaler or nebulizer medication (such as albuterol)?
 - Not at all (0)
 - Once a week or less (0)
 - 2 or 3 times per week (1)
 - 1 or 2 times per day (1)
 - 3 or more times a day (1)

TOTAL SCORE

→ If your TOTAL SCORE is 1 or greater, discuss this questionnaire with your provider.←

Adapted from the Asthma Therapy Assessment Questionnaire, available in English and Spanish at:
http://www.asthmacontrolcheck.com/asthma_control/asthmacontrolcheck/hcp/index.jsp?WT.svl=1#q11
Copyright © 2011 Merck Sharp & Dohme Corp., a subsidiary of Merck & Co., Inc. All rights reserved.
Appendix 11. Measuring Lung Function

Peak Flow Monitoring

Benefits
The use of peak flow monitoring can be a useful tool to monitor asthma control. Peak flow monitoring can measure the day-to-day changes in breathing patterns to help the patient to:

- Track the control of asthma over time.
- Show how well treatment is working.
- Recognize signs of flare-up before symptoms appear.
- Decide when to seek medical attention.

Frequency
The frequency of monitoring asthma control with the use of peak flow monitoring is a matter of clinical judgment. The health care provider should consider the following measurement time frames:

- Consider peak flow monitoring at 2-to-6 week intervals for patients who are just starting therapy or who require a step up in therapy to achieve or regain asthma control.
- Consider peak flow monitoring for patients who have well controlled asthma during scheduled Chronic Care Clinic visits and when the patient senses the asthma is getting worse.
- Consider peak flow monitoring at 3-month intervals if a step down in therapy is anticipated.
- Consider daily peak flow monitoring for patients who have moderate or severe persistent asthma, those who have a history of severe exacerbations, and those who poorly perceive airway obstruction or worsening asthma. This could be accomplished by issuing a self-carry peak flow meter and education on its use to those patients with unstable asthma to better monitor the patient’s asthma control.

Spirometry Testing Time Frames
The health care provider should consider the following spirometry testing time frames:

- At the initial assessment for patients whom the diagnosis of asthma is suspected.
- After asthma treatment is initiated and symptoms and Peak Expiratory Flow (PEF) have stabilized.
- During periods of progressive or prolonged loss of asthma control.
- At least every 1–2 years; more frequently, depending on response to therapy.
Appendix 12. Establishing Baseline Measures for Peak Flow Monitoring

<table>
<thead>
<tr>
<th>Establishing Individual Peak Expiratory Flow (PEF) Ranges</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline values are necessary for evaluating future values. Whenever possible, baseline values should be obtained when the patient is feeling well after a period of maximal asthma therapy. The patient should then record PEFR measurements 2–4 times daily for 2 weeks.</td>
</tr>
</tbody>
</table>

1. **Establish Personal Best:** The personal best (highest measurement) is determined from the readings gathered by the inmate.

2. **Establish Green, Yellow, and Red Zones:**
 a. **Green zone** – The patient's normal PEFR range is defined as 80–100% of the patient's personal best. When readings are within this range, symptoms are not present, and the patient should be advised to adhere to his or her regular maintenance regimen.
 b. **Yellow zone** – In this range, defined as 50–80% of personal best, airways are somewhat obstructed. The patient should implement the treatment plan decided upon with the clinician to reverse airway narrowing and regain control. The wide range represented by the yellow zone can be subdivided above and below the 65% level, if desired.
 c. **Red zone** – Defined as below 50% of personal best, this range signals an urgent situation and the inmate should seek medical attention. *Bronchodilator therapy should be started immediately.*

Note: Each patient's personal best value must be re-evaluated annually to account for disease progression. In addition, the PEFR measurements should be compared with office spirometry at least once per year; in some cases, the PEFR has been less accurate than measurement of FEV₁ in detecting airflow obstruction.
Appendix 13. Patient Fact Sheet: Basic Facts About Asthma

What is asthma? Asthma is a long-term disease that affects your lungs. It can cause wheezing, chest tightness, coughing, and a feeling of breathlessness. When these things happen, it is called an “asthma attack.”

What happens during an asthma attack? During an asthma attack, the airways in the lungs become inflamed or swollen. The inflammation and swelling make the airways smaller, which is why it is hard to breathe. Some asthma attacks are mild and only bother you a little. Some asthma attacks are severe and are an emergency. The table below lists the symptoms of asthma attacks:

<table>
<thead>
<tr>
<th>Mild Asthma Attack</th>
<th>Severe Asthma Attack</th>
<th>Emergency!</th>
</tr>
</thead>
<tbody>
<tr>
<td>Breathlessness while walking</td>
<td>Breathlessness while resting</td>
<td>Extreme difficulty breathing</td>
</tr>
<tr>
<td>Breathing faster than normal</td>
<td>More than 30 breaths each minute</td>
<td>Bluish color to lips and face</td>
</tr>
<tr>
<td>Can speak in short sentences</td>
<td>Can speak words, but not sentences</td>
<td>Cannot speak</td>
</tr>
<tr>
<td>Wheezing</td>
<td>Loudly wheezing</td>
<td>Severe anxiety</td>
</tr>
<tr>
<td>Heart rate less than 100 beats per minute</td>
<td>Heart rate more than 120 beats per minute</td>
<td>Rapid pulse and sweating</td>
</tr>
</tbody>
</table>

Can asthma be cured? Asthma does not have a cure, but you can take steps to control it. You and your doctor will work together to make asthma attacks less likely. You will be helping to control your asthma by using your medicine the way it is prescribed and by avoiding or managing “asthma triggers.”

What are asthma triggers? Asthma triggers are different for different people. You might be allergic to something in your environment, and sometimes these allergies trigger asthma attacks. Some common asthma triggers include: dust, pollen, mold, cigarette smoke, and smoke from burning leaves or grass. Asthma can also be triggered by dry, cold air and by exercise.

What kind of medicine is used to manage asthma? Asthma is commonly managed by using different types of inhalers. Inhalers are medicine you breathe into your lungs. Some give you quick relief when you are having an asthma attack. Others are meant to use every day in order to prevent asthma attacks. Your doctor may also suggest some other medicines to help treat allergies or manage other triggers.

<table>
<thead>
<tr>
<th>Quick Relief Inhalers</th>
<th>Long-Term Control Inhalers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use when having symptoms</td>
<td>Use every day</td>
</tr>
<tr>
<td>Helps during asthma attack</td>
<td>Do NOT use during an asthma attack</td>
</tr>
</tbody>
</table>

How do I know if my asthma is under control? When you are not wheezing or coughing, have no difficulty breathing with your normal activities, sleep better, and don’t need emergency medical help.

<table>
<thead>
<tr>
<th>Well-Controlled</th>
<th>Getting Worse</th>
<th>Emergency!</th>
</tr>
</thead>
<tbody>
<tr>
<td>No symptoms during day or night</td>
<td>Wheeze, cough, chest tightness</td>
<td>Very short of breath</td>
</tr>
<tr>
<td>Normal activities are not a problem</td>
<td>Have some difficulty with normal activities</td>
<td>Cannot do normal activities</td>
</tr>
<tr>
<td>Peak flow > 80% of personal best</td>
<td>Peak flow 50%- 79% of personal best</td>
<td>Peak flow <50% of personal best</td>
</tr>
</tbody>
</table>

What do I do if my asthma is not under control? If you are having an asthma emergency, notify the nearest staff member. If you believe your asthma is getting worse, please report to sick call.
Appendix 14. Datos Básicos Sobre el Asma (Basic Facts About Asthma)

Qué es el Asma? El Asma es una enfermedad pulmonar de largo tiempo. Puede causar silbido en los pulmones, pecho apretado, tos, o sentir falta de aire. Cuando esto sucede se conoce como un ataque de Asma.

Qué pasa durante un ataque del Asma? Durante un ataque de asma, la vía respiratoria se inflama. La inflamación puede causar hinchazón a su vez reducir la entrada de aire por la vía respiratoria, causando dificultad para respirar. Algunos ataques de Asma son leves y solo te sientes corto de respiración o malestar. Otros ataques de Asma son severos y pueden ser una emergencia. La tabla demuestra los síntomas de un ataque asmático:

<table>
<thead>
<tr>
<th>Ataque Asmático Leve</th>
<th>Ataque Asmático Severo</th>
<th>Emergencia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sentir la falta de aire cuando camina</td>
<td>La falta de aire mientras se esta en reposo</td>
<td>Extrema dificultad para respirar</td>
</tr>
<tr>
<td>Respirar mas rápido de lo normal</td>
<td>30 respiraciones por minuto o mas</td>
<td>La cara y los labios están descoloridos (se ven morados o azules)</td>
</tr>
<tr>
<td>Puede hablar con frases pequeñas</td>
<td>Puede hablar palabras pero no frases</td>
<td>No puede hablar</td>
</tr>
<tr>
<td>Silbidos en el pecho</td>
<td>Fuerte silbido en el pecho</td>
<td>Ansiedad severa</td>
</tr>
<tr>
<td>Ritmo cardiaco menos de 100 latidos por minuto</td>
<td>Ritmo cardiaco mas de 120 latidos por minuto</td>
<td>Pulso cardiaco rápidos y sudoración</td>
</tr>
</tbody>
</table>

Se Puede curar el Asma? El Asma no tiene cura, pero se puede coger pasos para controlar. Siguiendo las indicaciones médicas puede reducir los ataques de Asma. Debe conocer lo le provocar el ataque de Asma y evitarlo y tomar sus medicamento según indica el medico.

Qué son los desencadenantes del Asma? Lo provocación para un ataque de Asma es diferente en cada persona. Usted puede ser alérgico a algo en el ambiente, y a veces estas alergias pueden desencadenar ataques de Asma. Algunos desencadenantes comunes incluye: polvo, polen, moho, humo de quemar hojas o pasto. El frio seco y el ejercicio también pueden provocar Asma.

¿Cuáles medicamentos son usados para controlar el asma? El Asma se puede controlar usando diferentes tipos de inhaladores. Los inhaladores son medicinas inhaladas por la boca y llegan directo a los pulmones. Algunos dan alivio rápido cuando se tiene un ataque de Asma. Otros inhaladores son de uso diario o de mantenimiento para prevenir un ataque de asma. Su médico también podría sugerir otros medicamentos para ayudarle a tratar alergia u otros factores que causan asma.

<table>
<thead>
<tr>
<th>Inhaladores Para Alivio Rápido</th>
<th>Inhaladores Para Controlar a Largo Plazo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Se usa cuando usted esta teniendo las síntomas</td>
<td>Se usa a diario</td>
</tr>
<tr>
<td>Le ayuda durante un ataque de asma</td>
<td>No debe de usar durante un ataque de asma</td>
</tr>
</tbody>
</table>

Cómo puedo saber si mi Asma está bajo control? Cuando usted no tiene silbido en el pecho, no esta tosiendo, no tiene dificultad para respirar con actividades normales, puede dormir mejor, y no necesita ayuda de emergencia.

<table>
<thead>
<tr>
<th>Bien Controlado</th>
<th>Empeorando</th>
<th>Emergencia</th>
</tr>
</thead>
<tbody>
<tr>
<td>No tiene síntomas durante el día ni la noche</td>
<td>Silbido en el pecho, tos, presión en el pecho o pecho apretado</td>
<td>La respiración es muy corta</td>
</tr>
<tr>
<td>Sus actividades diarias no le causa problemas</td>
<td>Dificultad en las actividades normales</td>
<td>No puede hacer actividades normales</td>
</tr>
<tr>
<td>Flujo Espiratorio Máximo (FEM) > 80 %</td>
<td>Flujo Espiratorio Máximo (FEM) de 50–79 %</td>
<td>Flujo Espiratorio Máximo < 50 %</td>
</tr>
</tbody>
</table>

Qué puedo hacer si mi Asma no está bajo control? Si usted se siente en una emergencia asmática, notifíquelo al empleado que le quede mas cerca. Si usted cree que su asma esta empeorando repórtese a la consulta medica.
Appendix 15. Patient Fact Sheet: Peak Flow Meter Information

What is a peak flow meter?
A peak flow meter is a tool that you and your doctor can use to help you manage your asthma. Using your peak flow meter can help you recognize when you need to make changes to your asthma plan.

What does it measure?
A peak flow meter helps you measure how well you move air out of your lungs. It can help you recognize when your airways are beginning to narrow and you need treatment. Your peak flow meter has an indicator that will land on a number. You can compare that number to your “Personal Best Peak Flow Number” to make decisions about your asthma.

What is a Personal Best Peak Flow Number?
Your Personal Best Peak Flow Number is the highest number you reach on your meter when you have your asthma under good control. You should find this number over a two-week period when you are not having symptoms and are feeling well.

Why do I need a Personal Best Peak Flow Number?
It is important to find your Best Peak Flow Number because it will be different from other people—even other people who might be the same age or size as you. Your treatment plan will be specialized for you, based on this number. Once you know this number, your doctor can help you determine three zones for your asthma control: Green, Yellow, and Red.

How do I use the three zones?
Your doctor will prepare an “Asthma Action Plan” for you, showing your three zones, and which medications to use in each zone:

- The **Green Zone** will be numbers 80% or more of your Personal Best Peak Flow Number. This indicates that you have good control of your asthma and can use your medicines as usual.

- The **Yellow Zone** will be numbers between 50% and 80% of your Personal Best Peak Flow Number. If you have multiple readings in this zone, you should use your quick relief medication, and test again after a few minutes. If you continue to get readings in this zone, you should talk to your doctor about whether you need to change or increase your medication.

- The **Red Zone** will be numbers less than 50% of your Personal Best Peak Flow Number.
 - In this case, you should use your quick relief medication immediately. Alert your correctional officer or work supervisor to contact health services right away.

Are there any other ways I can use my peak flow meter to manage my asthma?
You can keep a diary of your peak flow numbers at different times of the day, before or after certain activities, and during different seasons. This may help you identify “asthma triggers” and gain better control of your asthma.

How do I use the Peak Flow Meter?
See the instructions on the next page.
How to Use a Peak Flow Meter

1. Move the indicator to the very bottom of the numbered scale on your meter.

2. Stand up.

3. Take a deep breath, filling your lungs as much as possible.

4. Place the mouthpiece in your mouth and close your lips around it. Make sure your lips form a seal and your tongue does not block the mouthpiece.

5. Blow out as hard and fast as you can in a single blow.

6. Write down the number shown by the indicator. If you make a mistake or cough, do not write down the number. Try it again.

7. Repeat until you have written down three numbers. Write the highest of the three numbers in your asthma diary. Be sure to write down the date.

8. If you are having difficulty using your peak flow meter, please tell your doctor.
Appendix 16. Hoja de Información para el Paciente: Información sobre el Medidor del Flujo Máximo (FEM) (Peak Flow Meter Information)

¿Qué es un medidor del flujo máximo?
Un medidor de flujo máximo es una herramienta que usted y su médico pueden utilizar para ayudarle a manejar su asma. Usando su medidor de flujo máximo puede ayudarle a reconocer cuando se necesita realizar cambios en su plan de asma.

¿Qué mide?
Un medidor de flujo máximo le ayuda a medir cómo se mueve el aire espiratorio de sus pulmones. Puede ayudarle a reconocer cuando las vías respiratorias están comenzando a estrecharse y la necesidad de tratamiento. Su medidor de flujo máximo tiene un indicador que le dará un número. Usted puede comparar ese número a su "Mejor flujo Máximo Personal" para tomar decisiones sobre su asma.

¿Cómo uso yo las tres zonas?
Su médico prepara un “Plan de acción de asma” para usted, mostrando sus tres zonas y los medicamentos a utilizar en cada zona:

- **La Zona Verde** serán números 80% o más del Numero Máximo del Flujo Personal. Esto indica que tiene buen control de su asma y puede usar sus medicamentos como de costumbre.
- **La Zona Amarilla** serán números entre 50% y 80% del Número Máximo del Flujo Personal. Si usted tiene múltiples lecturas en esta zona, deberá utilizar el medicamento de alivio rápido y repetir la prueba otra vez después de unos minutos. Si continúas obteniendo lecturas en esta zona, debe hablar con su médico sobre si usted necesita cambiar o aumentar su medicamento.
- **La Zona Roja** será menor que 50% del Numero Máximo del Flujo Personal.
 - **En este caso, debe usar su medicamento de alivio rápido inmediatamente. Alertar a su Oficial Correccional o supervisor de trabajo para que notifique al servicio de salud de inmediato.**

Hay algún otro modo que pueda usar mi medidor de flujo máximo para manejar mi asma?
Usted puede llevar un diario de sus números de flujo máximo en diferentes horas del día, antes o después de ciertas actividades o durante diferentes épocas del año. Esto puede ayudarle a identificar los "factores que desencadenan del asma" y obtener el mejor control de su asma.

Como se usa el medidor de flujo máximo?
Vea las instrucciones en la página siguiente.
Cómo usar un medidor de flujo máximo (How to Use a Peak Flow Meter)

1. Mueva el indicador a la parte más inferior de la escala numerada en su medidor.

2. Obtenga la posición erecta (Parada).

3. Toma una respiración profunda, llenando sus pulmones tanto como sea posible.

4. Coloque la boquilla en la boca y cierre sus labios alrededor de ella. Asegúrese de que sus labios forman un sello y la lengua no obstruya la boquilla.

5. Sople hacia fuera tan duro y rápido como sea posible en un solo golpe.

6. Anote el número mostrado por el indicador. Si cometes un error o tos, no anote el número. Inténtelo de nuevo.

7. Repita hasta que haya escrito tres resultados numéricos. Escriba el mayor de los tres números en su agenda de asma. Asegúrese de escribir la fecha.

8. Si usted está teniendo dificultad para usar su medidor de flujo máximo, por favor, dígale a su médico.
Appendix 17. Asthma Action Plan

Doing Well:
- No cough, wheeze, chest tightness, or shortness of breath during the day
- No difficulty with normal activities

Green Zone

<table>
<thead>
<tr>
<th>Medication</th>
<th>How Much to Take</th>
<th>When to Take It</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. **Take these long-term-control medications daily:**

Yellow Zone

1. **Yellow Zone Medications and add:**

 - 4 or 6 puffs every 20 minutes, for up to 1 hour
 - OR use Nebulizer once

2. **If your symptoms (and peak flow, if used) return to Green Zone, continue monitoring.**

3. **Report to Health Services for Sick Call.**

Red Zone

1. **Take this medicine immediately:**

 - 4 or 6 puffs OR Nebulizer

2. **Alert your Correctional Officer or Work Supervisor and seek medical attention!**

Medical Alert!

- Very short of breath, or
- Quick relief medicines have not helped, or
- Cannot do normal activities, or

Asthma is Getting Worse:

- Can do some, but not all, normal activities, or
- PEAK FLOW: ________ to ________

Red Zone

1. **Take this medicine immediately:**

 - 4 or 6 puffs OR Nebulizer

2. **Alert your Correctional Officer or Work Supervisor and seek medical attention!**

Danger Signs

IF YOU HAVE THESE SYMPTOMS:

- Trouble walking and talking due to shortness of breath
- Lips or fingernails turning blue

DO THIS IMMEDIATELY:

- Take 4 to 6 puffs of quick-relief medicine **AND**
- Alert the Correctional Officer and get medical attention NOW!!
Appendix 18. Plan de Accion del Asma (Asthma Action Plan)

<table>
<thead>
<tr>
<th>Paciente:</th>
<th>Doctor:</th>
<th>Fecha: / /</th>
</tr>
</thead>
</table>

ZONA VERDE (GREEN ZONE)

HACIENDO BIEN:
- No tos, sibilancias, opresión en el pecho o dificultad para respirar durante el día
- Ninguna dificultad con las actividades normales
- Flujo Máximo Espiratorio es más de: ________

1. Tome diariamente estos medicamentos para control de largo plazo:

<table>
<thead>
<tr>
<th>Medicación</th>
<th>¿Cuánto a tomar</th>
<th>Cuando tomarlo</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2. Antes del ejercicio: Si indicado tomar ___ soplos 15 minutos antes de la actividad.

ZONA AMARILLA (YELLOW ZONE)

EL ASMA ESTÁ EMPEORANDO:
- Tos, sibilancias, opresión en el pecho o dificultad para respirar, o
- Despertar en la noche debido al asma, o
- Puede hacer algunos, pero no todos, las actividades normales, o
- Flujo máximo: ________ to ________

1. CONTINUE TOMANDO sus medicamentos de zona verde y añadir:

- 4 o 6 inhalaciones cada 20 minutos, hasta 1 hora
- O utilizar nebulizador una vez

- (agonista de acción corta beta$_2$)

2. Si los síntomas (y el flujo máximo, si se usa) retornan a la zona verde, continúe monitorizando

- Si los síntomas (y el flujo máximo, si se usa) no retornan a la zona verde después de 1 hora:

- Tome: ________________________________ 4 o 6 soplos o nebulizador

- (agonista de acción corta beta$_2$)

- Añadir: ________________________________ ___ mg al día durante los días ___

- (corticosteroides orales)

3. REPÓRTESE AL SERVICIO DE SALUD PARA LA CONSULTA.

ZONA ROJA (RED ZONE)

ALERTA MÉDICA!
- Mucha dificultad para respirar, o
- Los medicamentos de alivio rápido no ayudan, o
- No puede realizar actividades normales, o
- Los síntomas son igual o peor después de 24 horas en la zona amarilla, o
- FLUJO Máximo Espiratorio es menos de: ________

1. Tomar este medicamento inmediatamente:

- 4 o 6 soplos o Nebulizador

- (Beta-agonista de acción corta $_2$)

- (corticosteroides orales)

2. Alerta su Oficial Correccional o Supervisor de trabajo y busque atención médica!

SEÑALES DE PELIGRO

SI USTED TIENE ESTOS SÍNTOMAS:
- Dificultad para caminar y hablar debido a la dificultad para respirar
- Los labios o las uñas se tornan azul

HAGA ESTO INMEDIATAMENTE:
- Toma 4 a 6 soplos de medicamento de alivio rápido y
- Alerta al Oficial Correccional y obtén atención médica AHORA!!